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TECHNICAL NOTE D-1051

APPLICABILITY OF MIXING LENGTH THEORY TO A TURBULENT VORTEX SYSTEM

By Robert G. Ragsdale

SUMMARY

The ability of mixing length theory to correlate vortex data is
evaluated. Expressions are derived for eddy diffusivity by applying the
techniques of von Karman and Prandtl which have been established for pipe
flow. Total and static pressures were measured from the outer radius to
the exhaust-nozzle radius of a vortex generator for a range of mass flows.
These data are combined with Navier-Stokes solutions for this region of
a compressible vortex to determine turbulent Reynolds numbers. The Reyn-
olds number is related to Prandtl and Karmén functions for various assumed
boundary conditions, and the experimental data are used to determine the
usefulness of these expressions. The following conclusions were reached:

(1) Mixing length functions developed by applying von Karman's
similarity hypothesis to vortex motion correlate the data better than do
Prandtl functions obtained with the assumption that mixing length is pro-
portional to radius.

(2) Some of the expressions developed do not adequately represent
the experimental data.

(3) The data are correlated with acceptable scatter by evaluating
the fluid radial inertia at the outer boundary and the shear stress at
the inner boundary. The universal constant Kk was found to be 0.04 to
0.08, rather than the value of 0.4 which is accepted for rectilinear
flow.

(4) The data are best correlated by a modified Kdrmén expression
which includes an effect of radial inertia, as well as shear stress, on
eddy diffusivity.

INTRODUCTION
The hydrodynamics of vortex flow has been the subject of a number of

technical reports. The initial interest in vortex flow was associated
with the energy separation, or Ranque-Hilsch effect, which is still under



investigation. Hartnett and Eckert (ref. 1) hav: reported measurements
of temperature and velocity profiles in a Rangue-Hilsch tube for a range
of conditions. Their data were taken at various axial distances from

the vortex inlet region. More recent data (ref. 2) suggest that the
energy separation is effected in the vortex generator itself and that the
axial discharge tubes are not a requirement for the Ranque-Hilsch phenom-
enon. In an extensive analysis of velocity, temperature, and pressure
distributions in a turbulent vortex with radial and axial flow, refer-
ence 3 concludes that the most important factor affecting the energy sep-
aration in a compressible vortex is the turbulen: shear work done on or

by a fluid element.

By applying the results of an analysis of a viscous vortex to mete-
orological data of tornado dimensions, it was found that the assumption
of turbulence resulted in reasonable agreement with observed sizes (ref.
4). It is pointed out that the turbulence should diminish as the fluid
accelerates toward the center, but that in the core the reverse effect
may well exist. Reference 4 suggests as a possibhle generalization that
the eddy viscosity be taken as proportional to eiponential powers of
tangential velocity and fluid kinematic viscosit;-.

A number of analyses of vortex systems have utilized the assumption
of laminar flow. The case of a compressible, viscous, heat-conducting
vortex flow generated by a rotating cylinder in «an infinite fluid field
has been treated in reference 5. From an analysis of the heat transfer
in a system of a dissociating gas in vortex flow between two concentric
cylinders, reference 6 found that the amount of e¢nergy that can be trans-
ported is greatly dependent on the radial Reynolds number. Reference 7
has considered the case of magnetohydrodynamical y driven vortices and
the reverse condition of an ionized gas in vorte:: flow generating elec-
trical power. The indicated performance of thes¢ systems, of course, is
dependent on the assumed condition of laminar flow.

Vortex flow is also receiving current atten.ion as a device to per-
mit the use of a gaseous nuclear reactor as a rocket motor. It is readily
shown that the practical operation of such a reactor requires that the
holdup time of the fissiocnable gas be increased -.0 100 to 1000 times that
of the propellant, and a vortex field suggests i-.self (ref. 8) as a pos-
sible means of attaining such a flow condition. In this system, turbu-
lence plays a double role. It diminishes maximur tangential velocities,
and, more importantly, it seriously limits the rate at which the propel-
lant gas can diffuse through the fuel region. The results of an analysis
of an air-bromine vortex system (ref. 9) show the degree to which turbu-
lence limits the maximum concentration of the hetwvy gas in such a system.
Experimental data are also given which indicate 1hat the vortex flow is
turbulent. Two recent studies of a vortex gaseol.s reactor are reported
in references 10 and 11.
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In each of these instances of vortex flow, the need for an under-
standing of turbulence is apparent. Analyses based on laminar flow are
indeed useful as a means of establishing ideal system performance. As
in pipe flow, however, a knowledge of the turbulent regime becomes neces-
sary in order to predict performance characteristics encountered in most
practical situations. It has been suggested that Prandtl's mixing length
theory (ref. 12) or von Kdrmén's similarity hypothesis (ref. 3) could be
applied successfully to a turbulent vortex. OSince these techniques have
been substantiated for rectilinear flow, this would seem to be a reason-
able approach.

Tt is not so clear, however, how specifically to apply either of
these techniques to vortex flow. It becomes necessary, therefore, to
obtain experimental data for turbulent vortex flow and then to evaluate
the validity of a mixing length type of approach to such a system. This
has been done, and the results are presented herein.

An analytical expression for the radial variation of tangential ve-
locity is obtained by replacing the laminar viscosity in the Navier-Stokes
equations by an eddy viscosity which is assumed to be invariant with
radial position. Turbulent Reynolds numbers were determined for the flow
of air through a vortex generator by matching the analytical expression
for tangential velocity with measured values at two radial stations. By
using both Prandtl and Karmén techniques and various assumed boundary
conditions, expressions are developed which give the turbulent Reynolds
number as a function of radial and tangential velocities. These expres-
sions were then investigated in terms of their ability to correlate the
experimental data.

Some of the functions did correlate the data with reasonable scat-
ter; some did not. By using a modification of von Kérman's basic approach
that was indicated by a trend of the data, a new function was derived.
This new expression is related to basic vortex flow parameters and 1is
shown to best correlate the experimental data. While the numerical values
of the constants in this function may not be applicable to vortices of
different geometries, it is felt that the correlation does properly sug-
gest a general functional relation of parameters affecting vortex flow.

SYMBOLS
a numerical constant
C constant in eq. (11)
CosCq1,Ce numerical constants
c specific heat at constant pressure



w0

vortex outer diameter, 2ro
eddy viscosity

gravitational constant
mechanical equivalent of heat
thermal conductivity

vortex axial length

mixing length

molecular weight

total pressure

pressure parameter defined in eq. (42)

static pressure

gas constant

radial Reynolds number
radius

total temperature
static temperature
radial velocity
tangential velocity
welght flow

distance from wall
axial coordinate

ratio of specific heats
eddy diffusivity

angular coordinate
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K universal constant in mixing length theory

vl viscosity

o) density

T shear stress

) dissipation term in energy equation
V1sVo,Vz viscous correction factors
Subscripts:

1 laminar

n inner or nozzle

o} outer

t turbulent

® infinity

Superscript:

! normalized to value at r

ANALYSTS

The general nomenclature for the analysis is as indicated in the
following sketch:

vy

Vortex analytical model



Assumptions

The assumptions made throughout the analysis are listed here, but
not necessarily in order of occurrence or importance:

(1) Thermal conductivity is zero

(2) 3/d6 = 3/3z = 0 (only the annular region is considered)
(3) Steady state

(4) The perfect gas law is obeyed

(5) No external body forces

(6) u << v, du/dr << dv/dr

(7) u and pe are constant

(8) Turbulent flow can be represented by laminar relations if o
is replaced by pe

(9) Radial and tangential velocity fluctuaticns are equal.

Fundamental Relations of Vortex Flow

Basic equations. - The technique described herein to determine the
turbulent Reynolds number of vortex flow from experimental measurements
i1s reported in reference 9. To obtain closed-form solutions for vortex
flow, laminar equations are used and then, by virtie of assumption (8),
are applied to the turbulent regime. The equations which require that

the system conserve fluid momentum are the Navier-iitokes relations (ref.

13). For compressible viscous flow and 0/06 = &/uz = 0, they may be
written:

woofoBER- 2% aey o

el 2lE-Y-2e ) o

The conservation of system energy for zero thermal conductivity is:

gt =0 o3 o) 0 -9

SYTT1-d
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The continuity equation for steady-state flow in the annular regiocn
(r, <r <7rg) is:

d(pur)
s -0 (4)
Finally, the equation of state is:
Rt
» =5 (s)

Ideal fluid relations. - For an ideal fluid (u = 0) and the assump-
tion that radial velocity functions are small compared with corresponding
tangential ones, the following familiar relations are obtained from equa-
tions (1) to (5):

.
2 \T1
Y - 1 Mv )
= + ———— = .
P p(l T const (6)
r-1
-
T = t(g) = const. (7)
b
v.r
ofo
vo=— (8)
= W _
-pur = 5= = const. (9)

Since the continuity relation expressed by equation (4) is for the
armular region of the vortex, where 0/dz = 0, equation (9) is similarly
restricted. The negative sign in equation (9) arises because the flow
is radially inward. Equations (6) to (9), though useful as simple ap-
proximations, become less and less valid as higher vortex strengths are
considered and are useful only for comparing real conditions with ideal
ones.

Real fluid relations. - By using equation (9) and the boundary con-
dition v(r,) = v, equation (2) may be integrated to give the tangential

velocity profile:

V'I“

vto= == (10)

= oy




where

2 z 2
— 1 C -C C
q’l = (v'r') [(1 - C)z + 2 (r,)Re-z + (r,)2R8—4] (ll)

O O

Here, a laminar Reynolds number is defired in terms of radial
velocity:

_ _pur
Re; = - . (12)

In equations (10), (11), and all succeeding ones the prime superscript
refers to the quantity normalized to its value at the radius r,; this

is, analytically, the smallest radius at which equation (4) applies and,
numerically, is taken to be the exhaust-nozzl: radius.

The constant C in the *1 function remnains to be evaluasted from

some additional boundary condition. Referencs 3 gives an expression for
the tangential velocity profile in the core (0 < r < r,) region, obtained

by assuming v(0) = 0 and pur = (pur)o(r/rn32. The constant C in

equation (11) is obtained by equating dv'/dr' from equation (10) and
dv'/dr' from the reference 3 profile at r = r,. This gives:

C= (2 E-Re)<;Re/2e_ j) (13)

Equation (13) is used throughout this report, and if combined with equa-
tions (10) and (11) gives the same tangential velocity profile as was
obtained in reference 3. As Re - o (inviscic flow), V1 » 1, and equa-

tion (10) yields the ideal fluid relation of equation (8). This suggests
that the function V¥; may be viewed as a "correction factor" which ac-

counts for viscous effects on the ideal velocity profile.

Equations (1), (3), (4), and @)cmnbecmmhmm and the boundary

condition t(r - w) = T_ applied to give the snergy relation:

1 Voro)2 (
= Vo - ¥3)
t =T -2( L - (14)

% cng
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where

2 2 o
1 2,4 C-cC 1 c
‘lfz ) (vc')r(')) [(l - C) ¥ R._e (r')Re-Z + Re - 1 (r')ZRe_4] (15)

¥z = (, r') [@ (L -¢)" + = e e (r')ZRe_‘L] (16)

The function Vo represents the effect of viscosity on radial momentum,
and WB the effect of the viscous dissipation term, the right side of
equation (3). As before, when Re - o, Vo = 1, and ¥z - 0, and equation

(14) gives the isentropic relation. Equation (14), then, gives the varia-
tion of static temperature with radius. The total-temperature variation
is given by:

2
v
2cng

(17)

where v 1is given as a function of radius by equation (10).

By utilizing assumption (6), equations (1) and (5) can be combined
to give the static-pressure gradient as:

1 dlp/p) w2
(p/p,) ar' T gRer’

(18)

Equation (18) is nonlinear and was solved by the Runge-~Kutta numerical
method on an IBM 704 computer. The boundary condition for equation (18)
is p/po =1 at r'=rl. The total pressure is given by equation (6).
All the working equations necessary to define the fluid dynamics of
the system (egs. (10) to (18)) as written are for laminar flow. That is,
Re 1is given by Re; as defined by equation (12). These equations were

used for turbulent flow by virtue of assumption (8), that turbulent flow
can be represented by laminar relations if i is replaced by pe:

~ Re, & (19)

= B
Ret—ReZu_i_pe_ Zpe

All equations remain as given, and the Reynolds number is now:

-pur _ -ur (20)

Re = Ret oc <

1]
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Mixing-Length Functions for Vortex Flow

In rectilinear flow, the viscous shear stress between two adjacent
fluid particles due to a velocity gradient between them is given by:

du

b 3y (21)

T =

To account for the additional friction losses due to turbulent motion,
Prandtl proposed a model based on a mixing length, or the average trans-
verse distance a fluid particle travels before adjusting to local condi-
tions. The assumptions that the velocity fluctuations normal and parallel
to the flow are equal gave the total shear stress on the fluid as:

T=<u+Em>§-;- (22)

where the eddy viscosity is defined as:

2 du

iy (23)

By = el

A more detailed discussion of this development may be found in reference
14, pages 113 to 114, and reference 15.

Prandtl functions. - Reference 12 shows that the "shear velocity"

(du/dy in pipe flow) in circular flow is givea by G%&-—%» and suggests

the possible assumption that the turbulent shear stress is proportional
2

to plz(%% - %) . For pipe flow, Prandtl asswied that the mixing length

was proportional to y, the distance from the vall. A similar assumption
for vortex flow is that the mixing length is proportional to some char-
acteristic dimension, assumed to be the radius:

1 = Kr (24)

The eddy diffusivity for vortex flow may be exoressed as:

_ By 2fdv v
€=?=-l(&'—;‘v (25)

This assumes equal radial and tangential velocity fluctuations. Combin-
ing equations (24) and (25) gives:

- _ l2fdy v
€ = - K°r (dr r) (26)
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If this expression is used, equation (20) becomes:

1
Re, = — (27)
t Kz

If the inertia factor wur and the shear stress factor, in the
denominator, are evaluated at some radius, equation (27) can be used to
determine the turbulent Reynolds number. It is not clear, however, where
to evaluate either of these factors. Since the outer and inner radii r

o
and 1r, bound all possible choices, they were used to give the following
forms of equation (27):

o)
1 ;7-(Vévé) Inertia at rg
Re, = — = (272)
t T2 T ofavt v
Kirt"l=— =« — Shear stress at r
1 1
o (ér r )o ©
Yo
;f-(véré) Inertia at r
Re, = —= =2 (27b)
t 2 fav' _v!
K== = — Shear stress at r
dr r'/h n
Un
o Inertia at r
1 Vn n
Re, = = - (27¢)
2 _efdv' v
Korl®50y - =7 Shear stress at
dr r'/s o}
Yn
— Inertia at r,
1 Vn
Re, = = - - (274)
K2 (v v ) Sh
—_— - — ear stress at r
dr' r n
n
Karmén functions. - Instead of taking the lelng length proportional

to a characteristic dimension as did Prandtl, von Karman proposed a
similarity hypothesis for turbulent motion (ref. 15, ch. 3). In a like
manner, it is assumed that turbulence in vortex flow 1s influenced only
by local conditions, represented by the shear stress and its derivatives,
and that a similarity exists from point to point in the system such that
the turbulence functions vary only by a scale factor, assumed to be the



1z

mixing length. From this, the mixing length in a vortex is given by:
(28)

This expression for mixing length gives the eddy diffusivity as:
G-9
2 dr T, (29)

ey

This expression can also be obtained by dimensional analysis (ref. 3).
Using this expression for eddy diffusivity in Reynolds number gives:

Re, = L ur['%(% j %}]2 (50)

K v w3
dr T

As before, both the inertia factor and the shear stress factor can be

€= -K

evaluated at either rqy Or rpt
2 ) wgre) [ (& - ) ?
Vo Voto/lgr ' \ar' ~ T° o
K av'’ _ v
drl rl O
90 \(yrpr) _d_(di _vy)©
1 \Yo 0" 07 ldr' \dr' r! o
Rey = — (30Db)
K dv' v\
dr! r'
n
(@)[L(@a _ z;)]z
v '\dr' '
Ret = —lé' 4 ° (300)
K Civ' v‘)3
dr' r' o
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1
Re, = — (306-)
t K2 dv! _ 11— 3
dr! r'/n
Modified Kérman function. - As will be seen later, when experimental

data were used to evaluate the constant « from equation (30b), a aif-
ferent approach suggested itself. What follows was not apparent a pri-
ori, but was developed to give a physical interpretation of a mathematical
function.

In the development of the mixing length functions for circular flow,
one significant difference between vortex and pipe flow was not considered.
In pipe flow the mean flow vector is parallel to the wall. This is not
so in vortex flow; there is a velocity component away from the wall. It
is this radial velocity which gives the fluid its radial inertia.

If it is postulated that the radial inertia at the outer boundary

(the injection point) and the shear stress and its derivatives at the
inner radius are the determining factors of turbulence, then:

o Y, 2E0] @

From dimensional analysis:

l-a

av _ v\’
)a (ir r)n , (32)

[}1.91 _Y
dr\dr r)1n

Equation (32) can be expressed in dimensionless form as:

e = Cy(ugre

- oy 1-a
Yo\(yrpn)[Ld (& ¥
(vo>(v°ro)[dr'(dr‘ r'/l,
Rey = Cp = (33)
av' v’
dr' r'/n
Simplified forms. - It was suggested in reference 3 that near the

outer boundary the tangential velocity variation is closely represented
by equation (8); that is, the tangential velocity varies inversely with
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radius. By using this simplification, both the Prandtl (eq. (27)) and
the Kérmén (eq. (30)) functions can be written in the form:

-u

Re, = CO(;,—O) (34)

[¢]

If equation (27) is combined with equatior. (8), the expression for
Co is 1/2k%; if equation (30) is used, Gy it given by 2/k%. With the

assumption that the tangential velocity varies inversely with radius at
the inner radius, admittedly a less defensible simplification, the Prandtl
and Kédrmén functions may be written:

Rey = CO(;_EE) (35)

Again, Cy represents l/2K2 from the Prandtl form and 2/K2 from the
Karmén expression.

An interesting development is obtained by writing equation (34) in
the following form:

_ [\ -(pur),
Re, = CO(V_O alrran (36)

Multiplying by (2pevo/uuo) gives:

(p;’—D) =% (Puﬁ) (37)

Equation (37) illustrates the point that vortex data can be correlated
equally well in terms of a laminar, tangential Feynolds number evaluated
at the outer boundary. The data of reference 1( are presented in this
manner and are included later in this report for comparison.

EXPERTMENT
Vortex Generator
The vortex test apparatus is shown in Tigurs 1(a). It was designed
to provide (1) tangential velocities up to 500 feet per second and mass

flows up to 0.1 pound per second and (2) measurements of total and static
pressure. Dry air at 70° F was regulated to maintain atmospheric pressure

SPTT-d
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in the vortex header and was exited to an altitude exhaust system which
was capable of a minimum pressure of 26 inches of mercury below
atmospheric.

The test section was constructed from Lucite to permit visual obser-
vation. The radius of the vortex cavity was 6 inches; the axial length
was 6 inches; and the exhaust-nozzle radius was 1.75 inches. The vortex
flow was induced by 16 guide vanes which formed the cylindrical surface
bounding the test cavity. The air was introduced through the 16 slits
which ran the entire 6-inch axial length; the slit opening was 0.006 to
0.008 inch. The inner chord length of a guide vane was 2.4 inches. Fig-
ure l(b) 1s a schematic drawing of the vortex generator.

Instrumentation

Static-pressure taps and total-pressure probes were located on both
end faces of the vortex as shown in figure 1(a). The total-pressure probes
were fabricated from 10-mil-outside-diameter tubing with a 3-mil wall
thickness. During test runs the probe tips were alined to give maximum
readings. A probe position normal to the radius gave maximum velocity
readings in all cases.

Total-pressure readings were taken at two radial stations for each
run; these were located at radii of 4.75 and 2.5 inches. No total-pressure
readings were taken in the central core of the vortex (r < rn) because
of difficulties arising from the fact that the probe tip would be in its
own wake. Though not included in this report, measurements were taken
at various probe depths to study any possible axial variation of tangen-
tial velocity. No such a dependence was indicated; all total-pressure
data reported herein were obtained at a depth of 2.5 inches.

Data Reduction

Tangential velocities were calculated from the measured static and
total pressures at the two stations r, = 4.75 inches and 1r1g = 2.5

inches. Equations (6) and (17) may be written in the form:

(38)

2gJc TP*\1/2
v o= %

1 + P*

where

Px = (E) -1 (39)
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The total temperature T was taken as 530° R in all cases; an error of
10° F in T would cause a l-percent error in velocity. An IBM 704 code
was used to iteratively select the Vo &nd Eey from equation (10),

which gave v, and V1o Wwithin 1/2 rercent of the values computed from
data using equation (38). This Rey was then used with equation (18)
to compute the variation of p/po with radius, and this curve was com-
pared with the data.

Figures 2(a) to (c) show the static-pressure and velocity variations
for low, medium, and high vortex strengths, respectively. The static-
pressure variation calculated from the analytical equations, using the
turbulent Reynolds number indicated by the tarngential velocities, is in
good agreement with the experimental data. For comparison, the curves
for inviscid flow, computed from equations (6), (7), and (8), are also
shown.

The remaining parameters needed to evaluste the various mixing
length functions were computed from:

-W
Yo = 2rlrop, (40)

-w
= (41)
Un 2nLrnpn

v

vy =

i
— Y . (42)
n

The derivatives dv/dr and dgv/dr2 were evaluated from equation (10).

RESULTS AND DISCUSSION

In figures 3, 5, and 6 various data symbols are used to denote two
series of runs; in figures 4 and 7 the data of both series are noted by
the same symbol. Each series represents a ranze of mass-flow rates from
the lowest measurable to the highest possible. After the first set of
data, noted by round symbols, was completed, tie test section was com-
pletely dissembled. Then, with no particular »mphasis on duplicate blade
settings, the generator was reassembled, and t1e data indicated by the
square symbols were obtained. All the experim:ntal data of this inves-
tigation are listed in table I.

During both series of runs, a phenomenon was observed which was
felt to warrant identification in figures 3, 5, and 6. At low vortex

SPTT-H
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strengths, the noise associated with the airflow was essentially silent.
As the vortex strength was increased, a point was reached - corresponding
to a tangential velocity of about 300 feet per second - at which a mono-
tone "whistle" was emitted from the test section. Subsequent measurements
proved this tone to be essentially a pure one, with a frequency of approx-
imately 1200 cycles per second. The whistle persisted with increasing
vortex strength up to a tangential velocity of 400 feet per second. At
this point the sound increased, essentially as a step function, to a much
louder, discordant sound more properly lasbeled "scream". This scream was
found to be comprised of many overtones and harmonics and of other 1200-
cycle sounds out of phase with each other.

Tt was felt that these high-frequency waves in the vortex cavity
might well affect the turbulence level of the flow. The plain symbols
represent silent operation; tailed symbols represent whistle runs; and
the symbols for the scream runs are solid. Socme of the data do show a
clearly ordered relation with respect to the three regimes of operation;
for this reason, such identification has been maintained although the
cause of the sounds is not fully understood.

Simplified Functions

Turbulent Reynolds numbers and radial-to-tangential velocity ratios
were computed from the experimental data. Figure 3(a) shows the results
of evaluating the velocity ratio at the outer boundary of the vortex.
Each data point represents an experimental run, for which a turbulent
Reynolds number and v, were determined from equation (10) and measured

values of vy and viq. The value of u, was computed from equation

(40) and a measured weight flow rate. The line through the data was drawn
u
so as to go through the origin (Rey = O, - ;9 = é), since no intercept is
o
permitted by the form of equation (34). Though considerable scatter is

present, the data are reasonsbly well represented by the line.

The value of the universal constant k was camputed from the slope
to be 0.038, using Cp = l/2K2. This is not in agreement with the value

of 0.4 that has been well established for pipe flow. A possible explana-
tion is that the universal constant is perhaps more constant than univer-
sal; that is, it has one constant value for vortex flow, and another con-
stant value for rectilinear flow. Such a conclusion is only suggested
by the few data of figure 3(a), however, and further evaluation would re-
quire additional independent studies.

Figure 3(b) was obtained by evaluating the velocity ratio at the
inner boundary r,. The extreme scatter of the data reflects the inade-

quacy of the assumption that the tangential velocity varies inversely with
the radius in the vicinity of r,. Again, the "best" line intersects the

origin and gives a value of Kk of 0.063 for Cqy = 1/2K2. The dashed line
represents a kK of 0.038, shown for comparison.
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The indication of figure 3 is that the assumption of an ideal flow
variation of tangential velocity with radius at the outer boundary of a
vortex is a reasonable one. If a value K = 0.038 is used, the turbulent

Reynolds number can be obtained from equation (34) with Co = l/2K2.

As a part of a study of vortex flow in a gaseous reactor, turbulence
data were obtained in reference 10 using vortex tubes that were 0.6, 1.0,

and 2 inches in diameter with nitrogen and helium as fluids. By camputing

tangential velocities from measured static-pressure gradients and using
essentially the same technique as described herein to obtain turbulent
Reynolds numbers, the eddy-to-laminar viscosity ratio pe/u was corre-
lated with a laminar, tangential Reynolds number evaluated at the periph-
ery (va/u)o. These data and the data of this investigation are shown in

figure 4.

The slope of the line through the data of this report was taken to
be 1.0, as suggested by the form of equation (37). The degree of corre-
lation in figure 4 is exactly the same as that shown in figure 3(a),
since equation (37) is simply an algebraic res:atement of equation (34).
The line with a slope of 0.86 is a least-mean-3quares fit obtained in
reference 10. The line with a slope of 1.0 was drawn to permit a com-
parison and gave a value of K from the data >f reference 10 of 0.02,
as compared with the 0.038 cbtained from the dita of this report.

This again suggests the possibility that she coefficient k is a
function of the flow pattern and, since all th: data of figure 4 are from
vortices, fluid or geometry parameters as well. Any such conclusion,
however, is predicated on the validity of the “wo assumptions of constant

(pe) with radius and of equal radial and tangential velocity fluctuations.

The former assumption is estimated to be the more doubtful.

Prandtl Functions

Figures 5(a) to (d) show the data evaluatcd in the form of Prandtl
functions given by equations (27a) to (27d), respectively. In both
figures 5 and 6, all lines with a positive slone intersect the origin.

Figure 5(a) shows the data plotted in the form of equation (27a).
Both the inertia factor and the shear stress fuctor are evaluated at the
outer boundary r,. Figure 5(a) shows essentiully no cause-effect rela-

tion between ordinate and abscissa. The "best' line 1s shown only to
permit a comparison of «, or slope, from this plot with the other «
values.

Figure 5(b) shows a plot of equation (27b , with the inertia factor

evaluated at r, and the shear stress at r,. Although the data can be
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represented by a straight line, a real value for K cannot be obtained
because the negative slope is not compatible with the form of equation
(27b). No effect of noise level is apparent in figure 5(b).

Figure 5(c) shows the data plotted in the form of equation (27c¢),

with the inertia factor evaluated at ry and the shear stress at ro.

Although a trend with respect to noise level can be seen, any interpreta-
tion of figure 5(c) is questionable because of the excessive scatter.
The line shown goes through the origin and gives k = 0.05.

The data shown in figure 5(d) are plotted in the form of equation
(274), with both the inertia and shear stress factors evaluated at Ty.
As in figure 5(b), the slope 1s negative, and there is no real value of
K in equation (27d). While considerable scatter is present, the appar-
ent trend in the data with respect to noise seemed to warrant identifica-
tion. Three lines are shown in figure 5(d) denoting silent, whistle, or
scream as the characteristic sound of operation. An investigation of the
cause and nature of these sounds was beyond the scope of this study, but
figure 5(d) indicates that they are related to turbulence effects in the
vortex.

To sum up, the only Prandtl function which correlated the experimen-
tal data was the one obtained by evaluating the inertia factor at the
outer boundary and the shear stress at the inner boundary. However, the
slope of the straight line through the data was negative; this is not in
accord with the form of the equation which was used to relate the depend-
ent and independent variables.

Karman Functions

Figures 6(a) to (d) show the data evaluated in the form of Kdrmén
functions given by equations (30a) to (30d4), respectively. Again, all
lines with a positive slope intersect the origin.

Figure 6(a) shows the result of evaluating both the inertia factor
and the shear stress at the outer boundary. This corresponds to the
Prandtl function of figure 5(a). The Karmén function represents the data
reasonably well and gives a value of K = 0.063. The parameters plotted
are those given by equation (30a).

The Karman function given in equation (30b), with the inertia factor
evaluated at r, and the shear stress at r,, is shown in figure 6(b).
Here the data are seen to exhibit very little scatter. These boundary
conditions also gave the best correlation with the Prandtl function (fig.
5(b)). A straight line through the data (shown dashed) has a negative

slope, which does not admit of a real root for the k% 1in equation (30b).
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The line from figure 5(b) is shown for comparison. The "best" line
through the data (shown solid) has a slight curvature. It was this that
first suggested a log-log plot, and the possibility of an exponential de-
pendency of the variables.

Figure 6(c) shows the result of evaluating the inertia factor at

r, and the shear stress at r, . The scatter of the data is excessive,

as was the case with the corresponding Prandtl function in figure 5(c).
The parameters plotted are given by equation (30c).

Figure 6(d) was obtained from equation {30d), with both the inertia
factor and the shear stress evaluated at r,. The use of these boundary

conditions results in a separation of the data with respect to the sound
characteristic of operation. This trend was also exhibited by the
Prandtl function with these boundary conditions (fig. 5(d)).

The Karman functions correlate the experimental data better than do
corresponding Prandtl functions for the same boundary conditions. The
best agreement is obtained by evaluating the inertia factor at the outer
boundary and the shear stress at the inner one. For these boundary con-
ditions, the experimental data exhibit a negative slope; this is incom-
patible with the form of both the Prandtl ani Karman relations. This in-
dicates that the ordinate and abscissa variahles do have a functional
relation, but that the model which resulted .n equation (28) is
incomplete.

Modified Karman Function

The trend of the data shown in figure 6 b) suggested an exponential
variation. Figure 7 is a replot of figure 6 'b) on log-log coordinates.
A log-log plot of the corresponding Prandtl unction (fig. 5(b)) would
have a similar appearance, but was not used hecause less scatter was ex-
hibited in figure 6(b). All the data are shown; no identification is
made of either the noise characteristic or tlie run sequence. The data
are represented by a straight line with very little scatter. The con-
stants in equation (33) were determined from figure 7 to be:

a=1.2

C, = 0.815

QPTT-7
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The experimental data are best correlated, then, by the modified
Karman function:

2
_u_O (V'I") d dV‘ _ ﬁ
Vo o o’ ldr'\ar' r' n
3
dv' _v"
(= - %)
n

While it is probable that the constants Cz and a are functions of the
system geometry and perhaps fluid properties, it is felt that equation
(33) does indicate the functional relation of shear stress, inertia, and
eddy diffusivity in a turbulent vortex. Subject to the validity of the
two primary assumptions - that pe is constant with radius and that
radial and tangential velocity fluctuations are equal - the data indicate
that eddy diffusivity in a turbulent vortex is a function of both radial
inertia and shear stress derivatives.

(33)

Ret = Cz

SUMMARY OF RESULTS

A series of runs were made with a vortex generator, using air as the
fluid. ©Static pressures were measured at various radial stations; two
total pressures were measured. A turbulent Reynolds number was determined
for each run by matching the experimental velocities to a closed-form so-
lution of the Navier-Stokes equations of motion for compressible flow in
the annular region of a vortex; the eddy viscosity is assumed to be con-
stant with radius. An expression for eddy diffusivity is developed for
vortex flow in terms of a Prandtl mixing length and a shear velocity.

Prandtl mixing length functions are obtained for vortex flow with
the assumption that mixing length is proportional to radius. Karman
functions are developed by applying a similarity hypothesis to vortex
flow, the scale factor is taken to be the mixing length. The Prandtl and
Karman functions contain an inertia factor and a shear stress factor. The
experimental data and the Navier-Stokes solutions are used to evaluate
these factors at inner and outer boundaries of the vortex. The following
results were obtained:

1. Some combinations of the assumed boundary conditions gave functions
which either did not correlate the experimental data or gave imaginary
values of the universal constant «.

2. Karman mixing length functions correlate the data better than
Prandtl ones for similar boundary conditions.



3. The universal constant Kk was found to te 0.04 to 0.08 for vor-
.ex flow, rather than the 0.4 established for pipe flow.

4. The Karman expression evaluated by defining both the inertia and
he shear stress at the outer boundary correlates the data without ex-
essive scatter for «k = 0.063.

5. The data are best correlated by a modified Karman expression
which is developed by dimensional analysis. It is assumed that, in addi-
tion to the shear stress and its derivatives, the eddy diffusivity is a
function of the radial fluid momentum at the outer vortex boundary.

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, June 12, 1961
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[ro = 6.0 4 = 4.75", rip = 2.5", 1y = 175", T

TABLE T.

- EXPERIMENTAL DATA

= 530° R.]

Run Airflow, Static pressure, in. Hg abs Total pressure, | Noise level
number w, in. Hg abs
1b/sec
Po Py P10 | Pn Pr=0| P4 P10

118 0.099 | 26.02 | 25.97 | 25.34 | 24,77 | 23.52 ] 23.42 | 26.02 Silent
119 .1065 | 21.85| 21.42 | 20.56 | 19.72 | 17.92| 22.07 | 21.52

120 .120 | 24.01| 23.92 | 22.87 | 21.92 | 19.82 | 24.62 | 23.92

121 .1185 | 22.82 | 22.62 | 21.80 | 21.12 | 19.82 | 23.22 | 22.62

122 .128 | 21.02 | 20.72 | 19.49 | 18.12 | 15.57 21.62 ] 20.82

123 .1395 | 19.35 | 19.07 [ 17.39 | 15.87 | 12.42 | 20.17 | 19.22

124 .1485 1 19.65| 19.32 | 17.53 | 15.82 { 12.02 | 22.57 | 19.52

125 L1335 ] 21.42 1 21.12 | 19.83 | 18.52 | 15.87 22,02 | 21.32

126 .1545 | 18.57 | 18.12 | 16.06 | 14.07 | 9.87 13.52 | 18.27 Whistle
127 .163 | 18.70] 18.32 | 16.10 { 13.92 | 9.32 | 19.77 | 18.42 Whistle
128 .1675 | 18.13 ] 17.67 | 15.17 | 12.97 7.87 19.32 | 17.92 Silent
129 .1675 | 15.60 | 15.17 [ 12.39 | 10.42 | 6.32 | 17.17 | 15.32 Scream
130 .172 | 15.10( 14.72 | 11.77 | 9.82 | 5.57 15.92 | 14.87

131 .180 | 15.35| 14.77 {11.89 | 9.72| 5.32| 17.07 | 14.92

132 .163 | 14.63 | 14.22 | 11.51 |} 9.57 | 5.52 | 13.32 | 14.37

133 .153 | 14.60 | 14.27 | 11.77 9.97 6.17 13.17 | 14.37

148 0.125 | 25.87 | 25.52 | 24.24 | 23.17 | 20.67 23.22 | 25.62 Silent
150 .121 | 18.48|18.32 | 17.11 | 15.92 | 13.27 13.02 | 18,37

151 .131 | 19.87 | 19.72 | 18.29 | 17.07 | 14.22 | 20.47 | 19.82

152 .139 | 21.39} 21.17 | 19.63 | 18.32 | 15.17 22.07 | 21.27

153 .144 1 23,75 23,47 | 21.88 | 20.27 | 16.72 | 24.47 | 23.87

154 .143 | 21.69 | 21.42 | 19.65 | 17.97 | 14.17 22.47 | 21.62

155 L1535 | 21.00 | 20.72 | 18.72 | 16.82 | 12.47 | 21.8% | 20.92

156 .1555 [ 19.20 | 18.92 | 16.80 | 14.82 | 10.32 | 22.12 | 19.02 Whistle
157 .166 | 19.87 {19.27 {16.90 | 14.82 | 8.72{ 23.67 |19.47

158 .170 | 19.73 ] 19.32 | 16.87 | 14.62 | S.22 23.82 | 19.862
158-2 .178 | 20.13 | 19.67 | 16.90 | 14.37 8.27 21.32 | 19.97

159 .186 | 20.07 | 19.57 {16.60 | 13.87 7.42 | 21.37 {19.97

160 .185 |[19.32|18.82 }|15.28 |12.82 | 7.32 | 21.02 |[19.12 Scream
161 .184 |18.30 | 17.82 {14.27 |11.82 | 6.52 | 22.02 | 17.97

162 .1895 | 18.33 | 17.67 | 14.03 | 11.57 6.12 | 23.12 |17.82

163 .1945 | 18.47 | 17.87 | 14.17 | 11.67 6.17 | 22.27 | 17.97

164 .2065 | 19.13 | 18.52 |14.68 |12.12 | 6.32 | 21.02 |18.72

165 .239 | 20.43|19.72 |15.62 |12.82 | 7.42 | 22.42 | 19.92

166 .2615 1 21.10 | 20.32 [ 15.98 [13.22 | 6.67 23,12 | 20.52

167 .294 | 22.62|21.82 |17.25 | 14.12 7.12 | 24.82 [ 22.02

168 .114 | 25.35 | 25.27 | 24.37 | 23.57 [ 21.62 | 25.77 | 25.32 Silent
169 .102 | 25.76 | 25.67 | 24.91 |24.27 | 22.72 | 23.17 {25.72 Silent
170 .0865 | 24.73 | 24.62 | 23.98 | 23.42 | 22.12 | 24.92 | 24.62
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(a) Photograph.

Figure 1. - Vortex test section.
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Figure 1. - Concluded. Vortex test section.
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Static-pressure ratio, p/pg
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Figure 2. - Vortex static-pressure and tangential velocity data.
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Static-pressure ratio, p/pO
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Figure 2. - Continued.
velocity data.

Vortex static-pressire and tangential

Tangential velocity ratio, v/v,
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Static-pressure ratio, p/po
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Figure 2. - Concluded. Vortex static-pressure and tangential

velocity data.
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Reynolds number, Re, (-ur/e)
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Eddy to laminar viscosity ratio, pe/u
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Reynolds number, Re, (-ur/e)
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Figure 5. - Prandtl function.
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Reynolds number, Re, (-ur/e)
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Reynolds number, Re, (-ur/e)
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Figure 5. - Concluded. Prandtl function.
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Reynolds number, Re, (-ur/e)
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Reynolds number, Re, (-ur/e)
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